Fast Track - MA109

Rational Expressions

Katherine Paullin, Ph.D.
Lecturer, Department of Mathematics
University of Kentucky
katherine.paullin@uky.edu

Wednesday, August 17, 2016

Outline

- Writing a Rational Expression in Simplest Form
- 2 Multiplication and Division of Rational Expressions
- 3 Addition and Subtraction of Rational Expressions
- Simplifying Compound Fractions
- 6 Practice

REEF Question

Reduce the fraction.

 $\frac{24}{40}$

REEF Question

Add

$$\frac{1}{7} + \frac{4}{5}$$

Section 1

Writing a Rational Expression in Simplest Form

Simplest Form

A rational expression is in **simplest form** when the numerator and denominator have no common factors (other than 1). After factoring the numerator and denominator, we apply the **fundamental property of rational expressions**.

Fundamental Property of Rational Expressions

If P, Q, and R are polynomials, with $Q, R \neq 0$,

$$\frac{P \cdot R}{Q \cdot R} = \frac{P}{Q} \text{ AND } \frac{P}{Q} = \frac{P \cdot R}{Q \cdot R}$$

Write the Expression in Simplest form:

$$\frac{x^2-1}{x^2-3x+2}$$

Factor, Factor, Factor!!

$$\frac{x^2 - 1}{x^2 - 3x + 2} = \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}$$
$$= \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}$$
$$= \frac{(x + 1)}{(x - 2)}$$

CAREFUL!!

You MUST cancel entire factors, not pieces of them.

WARNING! Do NOT do this:

$$\frac{x+1}{x+2} \neq \frac{x+1}{x+2} \neq \frac{1}{2}$$

Write the expression in simplest form.

$$\frac{a-b}{b-a} = \frac{-1(b-a)}{b-a} = \frac{-1(b-a)}{b-a}$$
$$= -1$$

$$\frac{(6-2x)}{x^2-9}$$

$$\frac{(6-2x)}{x^2-9} = \frac{2(3-x)}{(x-3)(x+3)} = \frac{2(3-x)}{(x-3)(x+3)}$$
$$= \frac{(2)(-1)}{x+3} = \frac{-2}{x+3}$$

Section 2

Multiplication and Division of Rational Expressions

Multiplying Rational Expressions

Given that P, Q, R, and S are polynomials with $Q, S \neq 0$,

$$\frac{P}{Q} \cdot \frac{R}{S} = \frac{PR}{QS}$$

- Factor all numerators and denominators completely.
- 2 Reduce common factors.
- **1** Multiply numerator \times numerator and denominator \times denominator.

Dividing Rational Expressions

Given that P, Q, R, and S are polynomials with $Q, R, S \neq 0$,

$$\frac{P}{Q} \div \frac{R}{S} = \frac{P}{Q} \cdot \frac{S}{R} = \frac{PS}{QR}$$

Invert the divisor and multiply.

Compute the product.

$$\frac{2a+2}{3a-3a^2} \cdot \frac{3a^2-a-2}{9a^2-4}$$

$$\frac{2a+2}{3a-3a^2} \cdot \frac{3a^2-a-2}{9a^2-4} = \frac{2(a+1)}{3a(1-a)} \cdot \frac{(3a+2)(a-1)}{(3a+2)(3a-2)}$$

$$= \frac{2(a+1)}{3a(1-a)} \cdot \frac{(3a+2)(a-1)^{(-1)}}{(3a+2)(3a-2)}$$

$$= \frac{-2(a+1)}{3a(3a-2)}$$

Compute the quotient.

$$\frac{4m^3 - 12m^2 + 9m}{m^2 - 49} \div \frac{10m^2 - 15m}{m^2 + 4m - 21}$$

$$\frac{4m^3 - 12m^2 + 9m}{m^2 - 49} \div \frac{10m^2 - 15m}{m^2 + 4m - 21}$$

$$= \frac{4m^3 - 12m^2 + 9m}{m^2 - 49} \cdot \frac{m^2 + 4m - 21}{10m^2 - 15m}$$

$$= \frac{m(2m - 3)(2m - 3)}{(m + 7)(m - 7)} \cdot \frac{(m + 7)(m - 3)}{5m(2m - 3)}$$

$$= \frac{m(2m - 3)(2m - 3)}{(m + 7)(m - 7)} \cdot \frac{(m + 7)(m - 3)}{5m(2m - 3)}$$

$$= \frac{(2m - 3)(m - 3)}{5(m - 7)}$$

Section 3

Addition and Subtraction of Rational Expressions

Adding and Subtracting

Addition and Subtraction of Rational Expressions

- Find the LCD of all rational expressions.
- 2 Build equivalent expressions using the LCD.
- 3 Add or subtract numerators as indicated.
- Write the result in lowest terms.

Compute.

$$\frac{7}{10x} + \frac{3}{25x^2}$$

The LCD for 10x and $25x^2$ is $50x^2$.

$$\frac{7}{10x} + \frac{3}{25x^2} = \frac{7}{10x} \cdot \frac{5x}{5x} + \frac{3}{25x^2} \cdot \frac{2}{2}$$
$$= \frac{35x}{50x^2} + \frac{6}{50x^2}$$
$$= \frac{35x + 6}{50x^2}$$

Compute.

10*x*

$$\frac{x^2-9}{x^2-9} - \frac{x-3}{x-3}$$

The LCD for (x^2-9) and $(x-3)$ is $(x-3)(x+3)$.

$$\frac{10x}{x^2 - 9} - \frac{5}{x - 3} = \frac{10x}{(x - 3)(x + 3)} - \frac{5}{x - 3} \cdot \frac{(x + 3)}{(x + 3)}$$

$$= \frac{10x - 5(x + 3)}{(x - 3)(x + 3)}$$

$$= \frac{5x - 15}{(x - 3)(x + 3)}$$

$$= \frac{5(x - 3)}{(x - 3)(x + 3)} = \frac{5(x - 3)}{(x - 3)(x + 3)}$$

$$= \frac{5}{x + 3}$$

Section 4

Simplifying Compound Fractions

Compound Fractions

A **compound fraction** is a rational expression whose numerator or denominator contain a fraction.

Example:
$$\frac{\frac{2}{3m} - \frac{3}{2}}{\frac{3}{4m} - \frac{1}{3m^2}}$$

Simplifying Compound Fractions

Simplifying Compound Fractions (Method 1)

- Add/subtract fractions in the numerator, writing them as a single expression.
- Add/subtract fractions in the denominator, also writing them as a single expression.
- multiply the numerator by the reciprocal of the denominator and simplify if possible.

Simplifying Compound Fractions (Method 2)

- Find the LCD of all fractions in the numerator and the denominator.
- Multiply the numerator and denominator by this LCD and simplify.
- 3 Simplify further if possible.

Simplify.

$$\frac{\frac{2}{3m} - \frac{3}{2}}{\frac{3}{4m} - \frac{1}{3m^2}}$$

The LCD for 3m, 2, 4m, and $3m^2$ is $12m^2$.

$$\frac{\frac{2}{3m} - \frac{3}{2}}{\frac{3}{4m} - \frac{1}{3m^2}} = \frac{\left(\frac{2}{3m} - \frac{3}{2}\right)\left(\frac{12m^2}{1}\right)}{\left(\frac{3}{4m} - \frac{1}{3m^2}\right)\left(\frac{12m^2}{1}\right)}$$

$$= \frac{\left(\frac{2}{3m}\right)\left(\frac{12m^2}{1}\right) - \left(\frac{3}{2}\right)\left(\frac{12m^2}{1}\right)}{\left(\frac{3}{4m}\right)\left(\frac{12m^2}{1}\right) - \left(\frac{1}{3m^2}\right)\left(\frac{12m^2}{1}\right)}$$

$$= \frac{8m - 18m^2}{9m - 4}$$

$$= \frac{2m(4 - 9m)}{9m - 4} = \frac{2m(4 - 9m)^{(-1)}}{9m - 4}$$

$$= -2m$$

Section 5

Practice

Practice

- 2 Compute $\frac{6v^2+23v+21}{4v^2-4v-15} \cdot \frac{4v^2-25}{3v+7}$
- **3** Compute $\frac{5b-10}{7b-28} \div \frac{2-b}{5b-20}$

REEF Questions

1 Compute $\frac{5b-10}{7b-28} \div \frac{2-b}{5b-20}$

Practice - SOLUTIONS

Reduce to lowest terms. $\frac{5p^2-14p-3}{5p^2+11p+2}$ $\frac{p-3}{p+2}$

- ② Compute $\frac{6v^2+23v+21}{4v^2-4v-15} \cdot \frac{4v^2-25}{3v+7}$ 2v + 5
- **3** Compute $\frac{5b-10}{7b-28} \div \frac{2-b}{5b-20}$

Practice

1 Subtract.
$$\frac{4n}{n^2 - 5n} - \frac{3}{4n - 20}$$

2 Simplify the compound rational expression. $\frac{\frac{2}{y^2-y-20}}{\frac{3}{y+4}-\frac{4}{v-5}}$

$$n. \frac{\frac{y^2 - y - 20}{y^2 + y - 20}}{\frac{3}{y + 4} - \frac{4}{y - 5}}$$

Practice - SOLUTIONS

• Subtract.
$$\frac{4n}{n^2 - 5n} - \frac{3}{4n - 20}$$

$$\frac{13}{4(n - 5)}$$

2 Simplify the compound rational expression.
$$\frac{\frac{2}{y^2-y-20}}{\frac{3}{y+4}-\frac{4}{y-5}}$$

$$\frac{-2}{y+31}$$